Relatório Final de Iniciação Científica Bolsa Institucional (RUSP)

Período: Setembro de 2012 a Agosto de 2013

ESTUDO OBSERVACIONAL DA ONDA DE TEMPERATURA DO SOLO NA REGIÃO DA ESTAÇÃO ANTÁRTICA BRASILEIRA COMANDANTE FERRAZ

Aluno: Fábio Alves Gomes Luengo N° USP: 7599710 e-mail: fabio.luengo@usp.br

Orientadora: Jacyra Soares

Departamento de Ciências Atmosféricas IAG – Instituto de Astronomia, Geofísica e Ciências Atmosféricas USP – Universidade de São Paulo Agosto de 2013

Sumário

1.	Introdução	2
2.	Objetivos	2
3.	Região de estudo e dados	3
4.	Metodologia	4
5.	Resultados	5
6.	Considerações finais	9
7.	Referências bibliográficas	9
8.	Agradecimentos	9
9.	Disciplinas cursadas	10

1. Introdução

A temperatura do solo é um importante parâmetro no balanço de energia e da transferência de radiação, influenciando modelos de previsão climática. As mudanças de temperatura do solo são regidas pelo balanço de radiação solar incidente e de onda longa emitida pela superfície. (Holmes *et al*, 2008).

Há fatores externos e intrínsecos que influenciam na temperatura do solo, sendo os fatores externos relacionados aos elementos meteorológicos (radiação solar, temperatura do ar, nebulosidade, vento e chuva); e os fatores intrínsecos são determinados pelo tipo de cobertura da superfície, relevo e pela composição do solo (fator microclimático) (Sentelhas, 2007).

Tem sido observado que a amplitude da variação diurna da temperatura do solo decai exponencialmente de acordo com a profundidade, tornando-se praticamente constante a partir de 1 metro de profundidade. Cada solo possui uma composição diferente, um calor específico e uma condutividade térmica diferente, influenciando diretamente na temperatura das camadas do solo. O gelo e a neve possuem um alto valor de calor específico se comparada a outros tipos de solo, e possuem um albedo bem elevado, permitindo pouca absorção e um espalhamento relativamente elevado. Outro fator determinante é a localização geográfica da região estudada, visto que nas latitudes mais elevadas a intensidade de radiação incidente na superfície é menor (Arya, 2009).

A evolução da camada permanentemente congelada é um bom indicador da mudança climática, sendo no norte da Península Antártica é descontinua. Sofre muita influencia as mudanças de temperatura e precipitação (Correia *et al.*, 2012).

O presente projeto se encaixa dentro do Projeto "Estudo da Turbulência na Antártica (ETA)", pertencente ao Instituto Nacional de Ciências e Tecnologia Antártico de Pesquisas Ambientais (INCT-APA).

2. Objetivo

O objetivo central deste projeto de Iniciação Científica foi descrever e analisar a variação diurna e sazonal da onda de temperatura do solo e do fluxo de calor no solo na região da EACF. Para a efetivação do presente objetivo, foi realizado:

- Levantamento bibliográfico da região para melhor conhecimento da região de estudo;
- Obtenção dos dados meteorológicos de temperatura do solo na região da EACF na internet;
- Tratamento dos dados para obtenção da onda de temperatura do solo;
- Estimativa do fluxo de calor no solo.

3. Região de estudo e dados

O continente antártico possui 13.661.000 km² incluindo as plataformas de gelo, isto é, aproximadamente, 38% maior do que o território brasileiro. Esta vasta área é o principal sorvedouro de calor, e controla as circulações atmosféricas e oceânicas no Hemisfério Sul e também é um dos responsáveis pela formação da água fria de fundo dos oceanos. Dessa forma, compreender os processos físicos que ocorrem na Antártica é fundamental para entender o clima existente no Hemisfério Sul(http://www.mar.mil.br/secirm/proantar.htm).

A Estação Antártica Brasileira Comandante Ferraz (EACF) está localizada em 62°05'S, 058°23'W nas Ilhas Shetland do Sul, mais precisamente na Península de Keller, Ilha Rei George (Figura 1). Possui uma temperatura média anual de 2,8°C abaixo de zero e possui uma área coberta por gelo ou neve de 1.158 km², equivalente a 92% do território (http://www.mar.mil.br/secrim/proantar.html).

Durante o verão, a região recebe uma forte influência de sistemas polares frontais. A umidade geralmente é bem elevada, variando, aproximadamente, entre 80 a 90%. As Ilhas Shetland do Sul são as únicas massas de terra emergente em sua latitude, com isso o estudo dessa região é de extrema importância para determinar como comporta a circulação atmosférica que acaba influenciando em diversos estudos (Correia *et al.*, 2012).

Figura1: Localização geográfica da EACF na Ilha Rei George, Ilhas Shetland do Sul.

Os dados utilizados neste projeto de Iniciação Científica foram medidos na região da EACF e se encontram no site (<u>http://antartica.cptec.inpe.br/~rantar/weatherdata.shtml</u>). Todos os dados meteorológicos foram coletados com resolução temporal de uma hora. Neste trabalho, foram utilizados especificamente os dados da temperatura do solo a diferentes profundidades: da superfície, a 5, 10 e 20 cm de profundidade do ano de 2010.

4. Metodologia

Dentre as temperaturas, a mais difícil de medir diretamente com boa precisão é a temperatura da superfície, devido ao grande gradiente de temperatura que há entre a superfície e a atmosfera (podendo variar de 10 a 20 K mm⁻¹). A temperatura máxima da superfície é atingida, aproximadamente, entre uma ou duas horas após a radiação solar máxima incidente. A temperatura mínima é atingida nas primeiras horas da manhã ou no período da noite, pois a superfície está mais quente do que a atmosfera desta forma, transferindo-a calor (Arya, 2009).

As temperaturas das camadas interiores do solo são mais fáceis de medir, pois a transferência de calor gerada pelo gradiente vertical de temperatura ocorre mais lentamente. Tem sido observado que a amplitude da variação diurna nas temperaturas do solo tem seu decaimento exponencial de acordo com a profundidade, e se torna insignificante nas profundidades abaixo de 1 metro. Fatores como a composição do solo, cobertura da superfície e a umidade da camada do solo mudam algumas propriedades físicas do solo (Tabela 1), influenciando na transferência de calor e, consequêntemente, na temperatura (Arya, 2009).

Material	Condição	Densidade (kg m ⁻³ x10 ³)	Calor específico (j Kg ⁻¹ K ⁻¹ x10 ³)	Capacidade térmica (J m ⁻³ K ⁻¹ x10 ⁶)	Condutividade térmica (W m ⁻¹ K ⁻¹⁾	Difusividade térmica (m ² s ⁻¹ x10 ⁻⁶)		
Ar	20°C	0,0012	1,01	0,0012	0,025	20,05		
Água	20°C	1,00	4,18	4,18	0,57	0,14		
Gelo	0°C	0,92	2,10	1,93	2,24	1,16		
Neve	Fresca	0,10	2,09	0,21	0,08	0,38		
Neve	Velha	0,48	2,09	0,21	0,08	0,38		
Solo	Fresca	1,60	0,80	1,28	0,30	0,24		
arenoso								
Argila	Seca	1,60	0,89	1,42	0,25	0,18		
Turfa	Seca	0,30	1,92	0,58	0,06	0,10		
Pedra	Sólido	2,70	0,75	2,02	2,90	1,43		
Tabela 1: Propriedades térmicas dos diferentes tipos de solo (Arya, 2009).								

A transferência de calor no solo ocorre através da condução térmica, que transfere calor da camada mais quente para a camada mais fria. O fluxo de calor no solo (G em W m⁻²) pode ser calculado em função da difusividade térmica (k em m² s⁻¹), da capacidade volumétrica (C_V em J m⁻³ K⁻¹) e do gradiente vertical da temperatura do solo (Oke, 1978)

$$G = -kC_V \frac{\partial T}{\partial z} \tag{1}$$

O produto entre a difusividade térmica e a capacidade volumétrica é equivalente a condutividade térmica C_1 (W m⁻¹ K⁻¹), que varia de acordo com o tipo de solo e a camada a que se deseja calcular o fluxo de calor. Desta forma, a Equação (2) fica (Oke, 1978):

$$G = -\mathsf{C}_1 \frac{\partial T}{\partial z} \tag{2}$$

Neste trabalho foi utilizada a equação (2) para o cálculo dos fluxos de calor, assumindo o fluxo positivo quando ocorre das camadas mais inferiores em direção a superfície.

Programas na linguagem Fortran foram construídos para retirar dos arquivos originais apenas os dados necessários para este trabalho, tais como: temperatura da superfície, a 5, 10 e 20 cm de profundidade do ano de 2010, por ser o último ano que se obteve dados de todos os meses do ano. Posteriormente, outro programa foi feito para calcular o gradiente vertical de temperatura e o fluxo de calor entre cada hora de dado coletado entre: a superfície e a 5 cm, entre 5 e 10 cm e entre 10 e 20 cm de profundidade. Por último foram calculadas as médias horarias das temperaturas de cada camada, do gradiente vertical de temperatura e do fluxo de calor entre cada camada. Todos os gráficos construídos neste trabalho foi utilizando o programa OriginPro8.

Uma das maiores dificuldades para calcular *G* é descobrir o valor mais apropriado da condutividade térmica do solo, a qual muda no tempo e no espaço. Dessa forma, os valores utilizados neste trabalho constituem a primeira tentativa de obtenção de *G*. valores mais adequados de C_1 serão investigados no decorrer do desenvolvimento do projeto observacional "Estudo da Turbulência na Antártica" (ETA) na EACF. Para o cálculo dos fluxos de calor do ano de 2010 e de janeiro do mesmo ano, foi utilizado um valor aproximado da condutividade térmica de 0.2 W m⁻¹ K⁻¹ (Correia *et al.*, 2012) e no mês julho de 2010, como há maior cobertura de neve no solo, foi utilizado o valor de 0,08 W m⁻¹ K⁻¹ (Arya, 2009), que corresponde à condutividade térmica da neve.

5. Resultados

Com os dados das temperaturas da superfície, a 5, 10 e 20 cm de profundidade foram realizadas médias aritméticas das referidas temperaturas do ano de 2010 e dos meses de janeiro e julho do mesmo ano (Figura 2). Esses meses foram escolhidos por representarem um mês de verão e um mês de inverno, respectivamente.

Para o mês de janeiro (Figura 2a) e para o mês de julho (Figura 2b) os gráficos foram construídos com médias diárias dos dados da temperatura da superfície, a 5, 10 e 20 cm de profundidade dos respectivos meses. Para o ano de 2010, foi realizada uma média de cada mês do referido ano das temperaturas descritas anteriormente (Figura 2c).

Figura 2: Variação temporal média diária e mensal das temperaturas da superfície do solo (em preto), a 5 cm de profundidade (em azul), a 10 cm de profundidade (em vermelho) e a 20 cm de profundidade (em roxo) dos meses de (a) janeiro e (b) julho de 2010 e (c) do ano de 2010.

Observa-se que no mês de janeiro de 2010 houve uma maior amplitude térmica em todas as camadas do solo. Em todos os casos, as temperaturas da superfície e a 10 cm obtiveram as maiores amplitudes enquanto a temperatura de 20 cm foi a que menos apresentou variação.

Para melhor observação do comportamento das temperaturas em cada época do ano, foi construído o gráfico que relaciona a temperatura média de cada camada nos três períodos descritos acima (Figura 3).

Figura 3: Média da temperatura da superfície, 5, 10 e 20 cm de profundidade de julho (em azul), janeiro (em vermelho) de 2010 e do ano de 2010 (em preto).

Como o mês de julho recebe pouca radiação solar incidente devido à inclinação do eixo da Terra deixar a região com pouca exposição aos raios solares tendo pouco aquecimento da superfície em comparação a outras épocas do ano, desta forma as temperaturas são menores. Já no mês de janeiro, o eixo de inclinação da Terra deixa a região da EACF mais tempo exposta a radiação solar, desta forma aquecendo mais a superfície e desta forma, tendo maior transferência de calor para as camadas inferiores. Em todos os casos observou-se que a temperatura na camada de 10 cm de profundidade foi a maior temperatura do solo, sendo que no mês de janeiro a temperatura da superfície obteve um valor próximo. Somente no mês de janeiro teve a temperatura na camada de 5 cm menor do que a temperatura da superfície. Em todos os casos, a temperatura na camada de 20 cm foi a menor, sendo que no ano de 2010 e no mês julho a temperatura da superfície foi relativamente próxima da temperatura da camada mais inferior.

Como o fluxo de calor no solo depende do gradiente vertical da temperatura entre as camadas a ser estudadas, foram construídos gráficos que mostram esse gradiente. Para a construção dos gráficos, foram utilizados os dados de temperaturas do solo da superfície, a 5, 10 e 20 cm de profundidade. Os gradientes verticais de temperatura calculados são entre a superfície e a 5 cm, entre 5 e 10 cm e entre 10 e 20 cm de profundidade dos meses de janeiro e julho do ano de 2010 (Figura 4).

Para os meses de janeiro (Figura 4a) e julho (Figura 4b), os gráficos foram construídos com médias horárias dos dados da temperatura da superfície, a 5, 10 e 20 cm de profundidade dos respectivos meses.

Figura4: Variação diurna da média horária dos gradientes verticais de temperatura entre a superfície do solo e a 5 cm (em preto), entre 5 cm e 10 cm (em vermelho) e entre 10 cm e 20 cm de profundidade (em azul) dos meses de (a) janeiro e (b) julho de 2010.

Como a superfície em janeiro recebe mais calor pelos motivos descritos acima, foi de se esperar um gradiente vertical de temperatura maior amplitude na camada entre a superfície e a 5 cm de profundidade e tendo a amplitude do gradiente diminuindo entre as camadas tendo na camada mais inferior, entre 10 e 20 cm de profundidade, um comportamento de onda com amplitude baixa. No mês de julho, como não há muita variação de radiação solar incidente, a superfície não aquece o suficiente para apresentar um alto gradiente vertical de temperatura com a camada de 5 cm, e consequentemente, mas camadas interior do solo possuem o mesmocomportamento, pois a troca de calor se

da pela condução térmica pois se uma camada não aquece o suficiente não produz um gradiente vertical de temperatura relativamente alto.

O fluxo de calor do solo da região da EACF foi calculado pela Equação (2) com as médias horárias dos gradientes verticais de temperatura demonstrada anteriormente e com a condutividade térmica mais adequada (Figura 5), sendo para o mês de janeiro (Figura 5a) e para o ano de 2010 (Figura 5c) o valor de 0.2 W m⁻¹ K⁻¹e paramês de julho (Figura 5c) o valor de 0.08 W m⁻¹ K⁻¹.

Figura 5: Variação diurna da média horária dos fluxos de calor entre a superfície e a 5 cm (preto), entre 5 e 10 cm (vermelho) e entre 10 a 20 cm (azul) dos meses (a) janeiro e (b) de julho de 2010 e (c) do ano de 2010.

Inicialmente observa-se que os fluxos de janeiro e do ano de 2010 são praticamente iguais, isso se deve ao fato de que os gradientes verticais de temperatura são de ordem de grandeza menor do que a condutividade térmica, que foi utilizado o mesmo valor para os dois períodos, fazendo com que os algarismos significantes sejam praticamente iguais nas situações.

Pela equação (2) vemos que o fluxo de calor no solo é dependente e oposto ao gradiente vertical de temperatura, desta forma, analisando simultaneamente a Figura (4) e a Figura (5) tem-se que o fluxo de calor aumenta quando o gradiente da temperatura da respectiva camada diminui. O pico máximo do gradiente do fluxo de calor se dar algumas horas após a máxima radiação solar incidente (Arya, 2009).

Quando a superfície recebe radiação solar, ela fica mais quente do que a camada a 5 cm gerando um gradiente vertical de temperatura grande o suficiente para uma transferência de calor mais significativa para a camada inferior, mudando de sentido

quando não há incidência de radiação solar, pois a superfície fica mais fica do que a camada de 5 cm. No mês de janeiro essa amplitude é maior do que no mês de julho.

Como a camada de 10 cm apresenta temperatura mais elevada em quase todo o período, temos fluxo positivo entre a camada de 5 e 10 cm durante a maior parte do dia no mês de janeiro e do ano de 2010 e durante todo o mês de julho; e fluxo negativo entre as camadas de 10 e 20 cm durante todo o dia nos três casos.

6. Conclusão

No estudo do gradiente vertical de temperatura (Figura 4) e do fluxo de calor (Figura 5), verificou-se que na região da EACF no mês de janeiro de 2010 o fluxo entre a superfície e a camada a 5 cm de profundidade possuiu um fluxo positivo no período noturno e nas primeiras horas da manha, comportamento semelhante na camada intermediária, com o fluxo diminuindo algumas horas após a camada superior. No mês de julho de 2010 houve fluxo positivo durante todas as 24h tanto da superfície para a camada a 5 cm quanto da camada de 5 cm para a de 10 cm, com baixa amplitude, porém mostrando que o interior do solo esteve mais quente do que a superfície.

A temperatura na camada de 10 cm de profundidade sempre está mais quente do que a camada inferior e, na maior parte do tempo, mais quente do que a superior. Isso explica o fluxo negativo na camada inferior e o fluxo positivo, na maior parte do tempo em janeiro e durante todo o dia no mês de julho, na camada intermediária.

7. Referências bibliográficas

- Arya, S. Pal, 2009: *Introduction to Micrometeorology, Second edition*, International Geophysics Serio, USA. 415pp.
- Correia, A., Vieira, G., Ramos, M., 2012: Thermal conductivity and thermal diffusivity of cores from a 26 meter deep borehole drilled in Livingston Island, Maritime Antarctic. Geomorphology, 7-11.
- Holmes T. R., Owe M., De Jeu, R. A. M., Kooi, H., 2008: *Estimating the soil* temperature profile from a single depth observation: A simple empirical heatflow solution. American Geophysical Union, W02412.
- Oke, T., R., 1978: Bounday Layer Climates, Mathuem, London. 372pp.

8. Agradecimentos

Agradeço a Bolsa da Reitoria da Universidade de São Paulo e ao INCT-APA.

9. Disciplinas cursadas

A seguir, são descritas outras atividades acadêmicas realizadas durante a vigência da bolsa:

Setembro de 2012 a fevereiro de 2013:

- Física I 3.9 (disciplina reprovada);
- Física Experimental II 7.2;
- Oceanografia por Satélite 6.0;
- Introdução às Equações Diferenciais Ordinárias e Aplicações 4.4 (disciplina reprovada).

Fevereiro a Agosto de 2013:

- Introdução à Física 5.9;
- Meteorologia Física II 7.7;
- Introdução à Dinâmica da Atmosfera e dos Oceanos 7.2;
- Cálculo Diferencial e Integral III 5.7.